
Page 6	 FoxRockX� May 2011

Build Your Own Project Tools
VFP makes it easy to write code to explore and manipulate projects and
their contents.

Tamar E. Granor, Ph.D.

While Visual FoxPro's Project Manager doesn't
offer much in the way of tools to audit or manage
projects, the ability to address the project as an
object more than makes up for this deficiency.
Much of my work is with projects originally written
by someone else. Usually, in those cases, I'm taking
over for the original developer. However, I recently
started helping an existing team of developers who
are moving a project forward.

As I was examining the project, trying to get
a feel for how it works, I found a lot of extra stuff
in the project folders. I also noticed that some files
didn't seem to be where they should. In other
words, as tends to happen over time, the project
had gotten messy.

When I take over a project, I have no qualms
about simply creating a new PJX, adding the main
program and clicking Build to see what really
belongs in the project. I'll generally throw my new
project and its associated files into a new folder, and
work from there, thus leaving the mess behind.

But in this case, I couldn't start moving things
around; others were using them. But I still need-
ed to get a handle on what was in use and what
wasn't. Fortunately, VFP gave me the tools to do
so with just a little code. I ended up creating a class
that's really a suite of project exploration and man-
agement tools.

The Project and File Objects
Since VFP 5, every open project is associated with
a Project object based on a COM class. Each Project
is a member of a Projects collection. You can ac-
cess both the collection and the active project (the
one with focus) using the _VFP system variable.
_VFP.Projects addresses the entire collection, while
_VFP.ActiveProject gives you a reference to the ac-
tive project. As soon as you open a project, it be-
comes _VFP.ActiveProject; that reference remains
constant until you close the project, or open or click
on another project.

Project has a number of useful properties, such
as Name, which contains the fully-qualified path
and filename for the project; and HomeDir, the
home directory of the project. It also has a Files

collection that provides access to each file in the
project. Files contains File objects, also COM-based.
The File object has properties including Name,
the fully-qualified path and filename; and Type, a
single-character indicating the type of file.

You can use these objects to explore a project
and its contents. Listing 1 shows a simple example.
It runs through the files in the active project and
sends their names to the Debug Output window.
To try it, just open a project, open the Debugger,
and run the code.

Listing 1. Walking through a project is easy with the Project
object and its Files collection.
LOCAL oFile

FOR EACH oFile IN _VFP.ActiveProject.Files
 DEBUGOUT oFile.Name
ENDFOR

Getting Started
For my project tools, I clearly needed to hold onto
a reference to the relevant project. As I started, I
suspected there'd be other information I'd want
to keep at hand, so I created a class based on the
Custom class, and added custom properties oProject
and cHomeDir to hold a reference to the project and
the project's home directory, respectively.

The GetProject method allows the user to spec-
ify the project to work with. It opens the specified
project, and sets the oProject and cHomeDir prop-
erties. Listing 2 shows the code. Note the NOWAIT
clause on MODIFY PROJECT to keep the project
open. You might also want to add the NOSHOW
clause so that the Project Manager isn't visible.

Listing 2. The GetProject method accepts the name of a proj-
ect, opens it and stores a reference to it.
PROCEDURE GetProject(cProject)
* Connect a project to this object.

LOCAL lProceed

IF VARTYPE(m.cProject) = "C"
 TRY
 MODIFY PROJECT (m.cProject) NOWAIT
 This.oProject = _VFP.ActiveProject
 lProceed = .t.
 CATCH
 lProceed = .F.

May 2011	 FoxRockX� Page 7

 ENDTRY
ELSE
 lProceed = .F.
ENDIF

IF NOT m.lProceed
 MESSAGEBOX("Unable to open specified " + ;
 "project: " + m.cProject + ;
 ". Make sure to provide a " + ;
 "good path.")
 RETURN
ENDIF

This.cHomeDir = This.oProject.HomeDir
RETURN

Indentifying Unused Files
My first priority when writing this class was
getting a list of files in the project folders that
weren't actually in the project. ListUnusedFiles
looks through the folder containing the project and
all its subfolders and makes a list of all the files
that are not in the project. It allows you to specify a
comma-separated list of folders to exclude from the
search. That's useful if, like me, you have certain
folders you use for items that are never added to
the project.

While it's possible to check each file name directly
against the project to see whether it exists, given VFP's
data processing speed, it made more sense to me to
fill a cursor with the list of files in the project. Then,
I could use SEEK to check whether a file is in the
project. Listing 3 shows the BuildFileCursor method.
It's not that different from the code in Listing 1; it
loops through the Files collection and puts the file
name and path for each into a cursor.

Listing 3. The BuildFileCursor method fills a cursor with the
names of files in the project.
PROCEDURE BuildFileCursor(cAlias, lIndex)
* Build a cursor of files in the project.
* If indicated, index it on the path + file
* combination.

cAlias = This.GetValidAlias(m.cAlias, ;
 "csrProjectFiles")

CREATE CURSOR (m.cAlias) ;
 (iID I AUTOINC, mFile M, mPath M)
INDEX on iID TAG iID
IF m.lIndex
 INDEX ON UPPER(CAST(FORCEPATH(mFile, mPath);
 AS C(200))) TAG FilePath
ENDIF

LOCAL oFile, cFilename, cPath

FOR EACH oFile IN This.oProject.Files
 cFileName = JUSTFNAME(oFile.Name)
 cPath = JUSTPATH(oFile.Name)
 INSERT INTO (m.cAlias) (mFile, mPath) ;
 VALUES (m.cFileName, m.cPath)
ENDFOR

RETURN

The GetValidAlias method deserves a mention
before proceeding. As this set of tools grew, I created
more and more methods that put their results into
a cursor. I wanted the user of the tool to be able to
specify the alias for each cursor, but wanted to have
a default alias if the user chose not to specify one.

I found myself writing the same code over and
over to test the alias parameter and substitute a
default. So I created GetValidAlias. It accepts two
parameters, the proposed alias and a default to use
if the proposed alias is missing or invalid. (Think of
it as NVL() or EVL() for aliases.) Given its general
utility, I think it's likely to wind up becoming a
function in my toolkit, rather than leaving it as a
method of this one class.

Identifying files in the project folders that aren't
in the project is a recursive task. We want to start in
the home directory, and check each folder it contains,
and the folders they contain and so forth. Generally,
recursive tasks call for at least two methods: one to set
things up and kick the job off, and one to do the actual
work. In this case, ListUnusedFiles (Listing 4) does
the set-up work and ListUnusedFilesInOneFolder
(Listing 5) is the recursive worker method.

Listing 4. The ListUnusedFiles method sets things up to
look for files in the project folders that are not included in the
project. Then, it gets the ball rolling by calling the recursive
ListUnusedFilesInOneFolder.
PROCEDURE ListUnusedFiles(;
 cAlias, cExcludeFolders)

IF VARTYPE(m.cExcludeFolders) <> "C"
 cExcludeFolders = ""
ELSE
 * Bracket with commas, so we can search for
 * the specified folder with commas on both
 * ends. Change to upper to simplify
 * searching. Also, prefix each with the
 * project's home directory.
 cExcludeFolders = "," + This.cHomeDir + ;
 "\" + UPPER(ALLTRIM(;
 STRTRAN(m.cExcludeFolders, ",", ;
 "," + This.cHomeDir + "\"))) ;
 + ","
ENDIF

cAlias = This.GetValidAlias(m.cAlias, ;
 "csrUnusedFiles")

CREATE CURSOR (m.cAlias) ;
 (iID I AUTOINC, mFileWithPath M)

* First, build a cursor of files in the
* project.
This.BuildFileCursor("csrProjectFiles", .T.)

This.ListUnusedFilesInOneFolder(;
 This.cHomeDir, m.cAlias, ;
 "csrProjectFiles", m.cExcludeFolders)

RETURN m.cAlias

The trickiest issue in all of this is handling the
excluded folders. I wanted to make it easy for the
user to specify the folders to exclude, which means

Page 8	 FoxRockX� May 2011

not having to spell out the full path for each. So,
the folders can be listed relative to the project's
home directory. ListUnusedFolders prefixes each
with the home directory. It also converts them all
to upper-case and puts commas at both ends of the
list, so that searching for a specific folder is easy.

Listing 5. The workhorse method for identifying unused files in
project folders is ListUnusedFilesInOneFolder, which works its
way through the folders recursively.
PROCEDURE ListUnusedFilesInOneFolder(;
 cFolder, cResultAlias, ;
 cProjFilesAlias, cExcludeFolders)

LOCAL aFolderFiles[1], nFileCount, nFile, ;
 cFileName, cSubFolder

nFileCount = ADIR(aFolderFiles, ;
 FORCEPATH("*.*", m.cFolder), "D")

FOR nFile = 1 TO m.nFileCount
 cFileName = aFolderFiles[m.nFile, 1]
 IF NOT INLIST(cFileName, ".", "..")
 IF "D" $ aFolderFiles[m.nFile, 5]
 * It's a folder, so call this method
 * recursively unless it's excluded
 cSubfolder = UPPER(ALLTRIM(;
 FORCEPATH(m.cFileName, m.cFolder)))
 IF NOT "," + m.cSubFolder + "," $;
 m.cExcludeFolders
 This.ListUnusedFilesInOneFolder(;
 m.cSubFolder, m.cResultAlias, ;
 m.cProjFilesAlias, ;
 m.cExcludeFolders)
 ENDIF
 ELSE
 * Check for this file.
 cExt = JUSTEXT(m.cFileName)
 IF INLIST(m.cExt, "SCT", "VCT", ;
 "MNT", "FRT", "LBT")
 cAssocExt = LEFT(m.cExt, 2) + "X"
 cFileToSearch = ;
 FORCEEXT(JUSTSTEM(m.cFileName),;
 m.cAssocExt)
 ELSE
 cFileToSearch = m.cFileName
 ENDIF

 cFileToSearch = FORCEPATH(;
 m.cFileToSearch, m.cFolder)
 IF NOT SEEK(m.cFileToSearch, ;
 m.cProjFilesAlias, "FilePath")
 INSERT INTO (m.cResultAlias) ;
 (mFileWithPath) ;
 VALUES ;
 (FORCEPATH(m.cFileName, ;
 m.cFolder))
 ENDIF
 ENDIF
 ENDIF
ENDFOR

RETURN RECCOUNT(m.cResultAlias)

The method is fairly straightforward. It uses
ADIR() to get a list of all files and folders in the
specified folder. Then it loops through that list. If
the item is a folder, it checks it against the list of
excluded folders. If the folder isn't excluded, the
method calls itself recursively.

VFP stores many project elements in tables,
using special extensions to indicate the type. (For
example, form files use SCX for the DBF and SCT
for the FPT.) The list of files in a project includes
only the DBF portion of such files, not the memo
file. So the method checks the extension of the file
it's working on. If it's one of the special memo files,
we search instead for the associated table file. If the
specified file isn't found in the cursor of files in the
project, we add it to the result cursor.

Find Files in the Home Directory
My next concern was identifying files stored in the
project's home directory. It was clear to me that the
intent on this project was to put all project files into
subdirectories based on their type, but the home
directory contained dozens of files. So I wanted to
know which of them actually belonged to the proj-
ect, and ultimately get them where they should be.

Finding these files was a much simpler task
that identifying unused files. It required just a loop
through the files in the project. ListFilesInRoot,
shown in Listing 6, stores the list in a cursor.

Listing 6. ListFilesInRoot builds a list of files included in the
project, but stored in the project's home directory.
PROCEDURE ListFilesInRoot(cAlias)

LOCAL oFile

cAlias = This.GetValidAlias(;
 m.cAlias, "csrFilesInRoot")

CREATE CURSOR (m.cAlias) ;
 (iID I AUTOINC, mFileName M)

LOCAL cUpperHome, cFileName

cUpperHome = UPPER(This.cHomeDir)

FOR EACH oFile IN This.oProject.Files
 cFileName = UPPER(oFile.Name)
 IF JUSTPATH(m.cFileName) == m.cUpperHome
 INSERT INTO (m.cAlias) (mFileName) ;
 VALUES (oFile.Name)
 ENDIF
ENDFOR

RETURN m.cAlias

Putting the files where they belong is a more
complicated task. There are two tricky parts. The
first is knowing where to put the files. To handle that,
I added a set of properties to the class to hold the
names of the folders for different project components.
These properties have names like cFormDir and
cClassLibDir. The MoveFilesFromRoot method
(Listing 7) prompts the user to specify the right folder
for each one the first time it's needed, and stores the
result in the property.

Listing 7. Moving files from the project's home directory to the
right subfolder can be tricky.
PROCEDURE MoveFilesFromRoot

May 2011	 FoxRockX� Page 9

LOCAL nFilesToMove, nFile, cFile, cPartnerFile
LOCAL cDestFolder, oFile, cType, nSkipped
LOCAL cDescription

nFilesToMove = ;
 This.ListFilesInRoot("csrFilesInRoot")

* Add a field to track whether we've
* successfully moved the file.
ALTER table csrFilesInRoot ADD lMoved L

nSkipped = 0

SELECT csrFilesInRoot
SCAN
 cFile = csrFilesInRoot.mFileName
 IF FILE(m.cFile)
 oFile = This.oProject.Files[m.cFile]
 ELSE
 nSkipped = m.nSkipped + 1
 LOOP
 ENDIF

 * Strategy is to collect all information,
 * then move the file, remove it from the
 * project, then add it back.

 * First, figure out what kind of file we
 * have, thus, where it's going and whether
 * there's a "partner" file.

 cType = UPPER(oFile.Type)
 cDestFolder = ""

 DO CASE
 CASE m.cType = "K"
 IF EMPTY(This.cFormDir)
 This.cFormDir = GETDIR("", ;
 "Specify form folder for " + ;
 "project","Form folder")
 ENDIF

 IF NOT EMPTY(This.cFormDir)
 cDestFolder = This.cFormDir
 cPartnerFile = FORCEEXT(m.cFile, "SCT")

 * Need to fix paths in the file
 This.FixClassLoc (m.cFile,;
 This.cHomeDir, This.cFormDir)
 This.FixPictures (m.cFile,;
 This.cHomeDir, This.cFormDir)
 ENDIF

 CASE m.cType = "V"
 IF EMPTY(This.cClassLibDir)
 This.cClassLibDir = GETDIR("", ;
 "Specify classlib folder for " + ;
 "project","Classlib folder")
 ENDIF

 IF NOT EMPTY(This.cClassLibDir)
 cDestFolder = This.cClassLibDir
 cPartnerFile = FORCEEXT(m.cFile, "VCT")

 * Need to fix paths in the file
 This.FixClassLoc(m.cFile, ;
 This.cHomeDir, This.cFormDir)
 This.FixPictures (m.cFile,;
 This.cHomeDir, This.cFormDir)
 ENDIF

 CASE m.cType = "P"
 IF EMPTY(This.cProgDir)
 This.cProgDir = GETDIR("", ;
 "Specify program folder for " + ;

 "project","Program folder")
 ENDIF

 IF NOT EMPTY(This.cProgDir)
 cDestFolder = This.cProgDir
 cPartnerFile = ""
 ENDIF

 CASE m.cType = "M"
 IF EMPTY(This.cMenuDir)
 This.cMenuDir = GETDIR("",;
 "Specify menu folder for " + ;
 "project","Menu folder")
 ENDIF

 IF NOT EMPTY(This.cMenuDir)
 cDestFolder = This.cMenuDir
 cPartnerFile = FORCEEXT(m.cFile, "MNT")
 ENDIF

 CASE m.cType = "R"
 IF EMPTY(This.cReportDir)
 This.cReportDir = GETDIR("",
 "Specify report folder for + ;
 "project","Report folder")
 ENDIF

 IF NOT EMPTY(This.cReportDir)
 cDestFolder = This.cReportDir
 cPartnerFile = FORCEEXT(m.cFile, "FRT")
 ENDIF

 CASE m.cType = "X" AND ;
 INLIST(UPPER(JUSTEXT(m.cFile)), ;
 "ANI", "BMP", "CUR", "DIB", "EMF", ;
 "EXIF", "GIF", "GFA", "ICO", "JPG", ;
 "JPEG", "JPE", "JFIF", "PNG", "TIF", ;
 "TIFF", "WMF")
 IF EMPTY(This.cGraphicsDir)
 This.cGraphicsDir = GETDIR("",
 "Specify graphics folder for + ;
 "project","Graphics folder")
 ENDIF

 IF NOT EMPTY(This.cGraphicsDir)
 cDestFolder = This.cReportDir
 cPartnerFile = ""
 ENDIF

 CASE m.cType = "X" AND ;
 INLIST(UPPER(JUSTEXT(m.cFile)), "H")
 IF EMPTY(This.cIncludeDir)
 This.cIncludeDir = GETDIR("", ;
 "Specify include file folder for + ;
 " project","Include file folder")
 ENDIF

 IF NOT EMPTY(This.cIncludeDir)
 cDestFolder = This.cIncludeDir
 cPartnerFile = ""
 ENDIF
 ENDCASE

 IF EMPTY(m.cDestFolder)
 nSkipped = m.nSkipped + 1
 ELSE
 cDescription = oFile.Description

 cNewFile = FORCEPATH(m.cFile, ;
 m.cDestFolder)
 RENAME (m.cFile) TO (m.cNewFile)
 IF NOT EMPTY(m.cPartnerFile) AND ;
 FILE(m.cPartnerFile)
 RENAME (m.cPartnerFile) TO ;
 FORCEPATH(m.cPartnerFile, ;

Page 10	 FoxRockX� May 2011

 m.cDestFolder)
 ENDIF
 oFile.Remove()
 oFile = ;
 This.oProject.Files.Add(m.cNewFile)
 oFile.Description = m.cDescription
 REPLACE lMoved WITH .T. IN csrFilesInRoot

 ENDIF

ENDSCAN

RETURN "csrFilesInRoot"

The second tricky part is actually much harder.
Files in a VFP project may contain references to
other files in the project. Moving a file can break
such references. For now, I've chosen to handle only
the most common of those problems automatically.
The ClassLoc field of form (SCX) and class library
(VCX) files contains relative paths to the referenced
objects (if they're on the same drive as the file
itself); MoveFilesFromRoot calls another method,
FixClassLoc (Listing 8), to correct those references.
(The GetNewPath method it calls finds a new
relative path to the location.) I also fix references
to graphic files in Picture and Icon properties; the
FixPictures method (not shown here) handles that
chore.

Listing 8. VFP's forms and class libraries contain relative
references to other class libraries. FixClassLoc fixes those
references when the form or classlib is moved.
PROCEDURE FixClassLoc(;
 cFileName, cOldDir, cNewDir)

LOCAL cCurPath, cNewPath, cFilePath
LOCAL nOldSelect

nOldSelect = SELECT()

cOldDir = ADDBS(m.cOldDir)
cNewDir = ADDBS(m.cNewDir)

cFilePath = ADDBS(JUSTPATH(m.cFileName))

SELECT 0
USE (m.cFileName) ALIAS __CXFile

SCAN
 IF NOT EMPTY(__CXFile.ClassLoc)
 cNewPath = This.GetNewPath(;
 __CXFile.ClassLoc, m.cFilePath, ;
 m.cNewDir)
 REPLACE ClassLoc WITH m.cNewPath
 ENDIF
ENDSCAN

USE IN SELECT("__CXFile")

SELECT (m.nOldSelect)
RETURN

Other cases you need to watch for are coded
references to other files that include relative paths,
and include files. The method moves include files,
but does not check other files in the project to see
whether they reference the moved file.

Other listings
The class contains several other routines to produce
lists. One builds a list of folders containing project
files, including the number of files in each folder.

Another builds a list of files in the project that
are stored outside the project's folder hierarchy; I
wrote that one when I noticed a couple of folders
from VFP's FFC hierarchy in the list of folders. Given
that this project is stored on a network drive, my
client was surprised to see anything that referenced
the local hard drive.

A third method builds a list of files listed in the
project that don't exist on disk, and a fourth builds
a list of all the graphics referenced by Picture and
Icon properties in the project. The code for these
methods is straightforward, so I'm not including it
here. (The complete class is included in this month's
downloads.)

Copying a Project and its Files
When I told my client that there were thousands of
extraneous files in the project folders, he suggested
that the easiest way to clean up would be to copy
the project and the files it's using into a new folder,
rather than deleting all the junk. So I added a method
(CopyProject, shown in Listing 9) to the project to
do just that. The only tricky part is ensuring that the
memo files come along with the various table-based
files. The version of this method in the downloads
brings along additional properties of the project,
ensures that graphics files referenced in the project
are copied, whether or not they're included in the
original project, and makes sure the right file is set
as the main program.

Listing 9. The CopyProject method makes a copy of the
project and all its files in the specified folder.
PROCEDURE CopyProject(cNewRoot)

LOCAL oFile, cNewName, cNewPath, cNewProject
LOCAL oNewProject, cMissing, cNoAdd
LOCAL cFileExt, cNewExt

IF PCOUNT() < 1 OR EMPTY(m.cNewRoot)
 MESSAGEBOX("CopyProject: You must " + ;
 "specify the folder for the copy.")
 RETURN
ENDIF

* First, does the new folder exist?
IF NOT DIRECTORY(m.cNewRoot)
 MD (m.cNewRoot)
ENDIF

* Create the new project.
cNewProject = ;
 FORCEPATH(This.oProject.Name, m.cNewRoot)
CREATE PROJECT (m.cNewProject) NOWAIT
oNewProject = _VFP.ActiveProject

* Copy all files to appropriate directories
cMissing = ""
cNoAdd = ""

May 2011	 FoxRockX� Page 11

FOR EACH oFile IN This.oProject.Files
 IF NOT FILE(oFile.Name)
 * Original file is missing. Make a list
 * for user.
 cMissing = m.cMissing + ;
 CHR(13) + CHR(10) + oFile.Name
 LOOP
 ENDIF

 IF This.cHomeDir $ oFile.Name
 cNewName = cNewRoot + ;
 STREXTRACT(oFile.Name, ;
 This.cHomeDir,"",1,3)
 cNewFilePath = JUSTPATH(m.cNewName)
 IF NOT FILE(m.cNewName)
 IF NOT DIRECTORY(m.cNewFilePath)
 MD (m.cNewFilePath)
 ENDIF
 COPY FILE (oFile.Name) TO (m.cNewName)
 ENDIF

 * Copy associated memo file.
 cFileExt = JUSTEXT(m.cNewName)
 IF INLIST(UPPER(m.cFileExt), ;
 "SCX", "VCX", "MNX", "FRX", "LBX")
 cNewExt = LEFT(m.cFileExt,2) + "T"
 COPY FILE ;
 (FORCEEXT(oFile.Name, m.cNewExt)) TO ;
 (FORCEEXT(m.cNewName, m.cNewExt))
 ENDIF
 ELSE
 * If the original file is not in the
 * project folder hierarchy, don't copy it.
 * Just add the original to the new
 * project.
 cNewName = oFile.Name
 ENDIF

 * Now add it to the new project. Wrap in
 * TRY-CATCH in case it's already there.
 TRY
 oNewFile = ;
 oNewProject.Files.Add(m.cNewName)
 CATCH
 cNoAdd = m.cNoAdd + ;
 CHR(13) + CHR(10) + m.cNewName
 ENDTRY

ENDFOR

* Report to user
IF NOT EMPTY(m.cMissing)
 cMissing = "The following files in the " + ;
 "project were not found: " + m.cMissing
ENDIF

IF NOT EMPTY(m.cNoAdd)
 cNoAdd = "The following files were not " + ;
 "able to be added to the project: " + ;
 m.cNoAdd
ENDIF

DO CASE
CASE EMPTY(m.cMissing) AND EMPTY(m.cNoAdd)
 cMessage = "Project and all its files " + ;
 "copied to " + m.cNewRoot
CASE EMPTY(m.cMissing)
 cMessage = "All project files were " + ;
 "copied. " + m.cNoAdd
CASE EMPTY(m.cNoAdd)
 cMessage = m.cMissing
OTHERWISE
 * We have both kinds of message.
 cMessage = m.cMissing + ;
 CHR(13) + CHR(10) + m.cNoAdd

ENDCASE

MESSAGEBOX(m.cMessage)

* Close the new project
oNewProject.Close()

RETURN

The method first creates the project file (creating
the folder, if necessary). Then it copies each file into
the new hierarchy, again creating folders as needed.
After copying the file, the new file is added to the
new project.

Along the way, the method keeps track of files
it can't find, and files that couldn't be added to the
project. After the main loop, these two lists are
displayed. Finally, the new project is closed.

Producing Reports
While I like putting results into cursors, after I'd
written a couple of the list routines, it became
apparent that I'd also want a way to put the results
into reports. But I didn't want to have to design a
separate report for each list.

I decided to take advantage of VFP's Quick
Report capability, and allow the reporting methods to
generate a report if the necessary report didn't exist. So
I wrote a generic reporting method (ReportOnProject,
shown in Listing 10) that accepts three parameters: an
alias containing the data to report, a comma-separated
list of the fields in that alias to report on, and the name
of a report file. The last two parameters are optional.

Listing 10. The ReportOnProject method provides a generic
report mechanism for the tool. It can use an existing FRX or
create one on the fly.
PROCEDURE ReportOnProject(;
 cAlias, cColumns, cReport)

IF VARTYPE(m.cAlias) <> "C" OR ;
 NOT USED(m.cAlias)
 ERROR 11
ENDIF

LOCAL cReportFile, lCreatedReport
LOCAL cFieldsClause, aFieldList[1]
LOCAL nFields, nField, cFieldList
LOCAL aColumns[1], nColumns
LOCAL cFieldName, cNewFieldSpec

IF VARTYPE(m.cReport) <> "C" OR ;
 NOT FILE(m.cReport)
 cReportFile = ;
 FORCEPATH("ProjectReport",SYS(2023))
 lCreatedReport = .T.

 IF NOT EMPTY(m.cColumns)
 nColumns = ALINES(aColumns, ;
 m.cColumns, ",")
 ELSE
 nColumns = 0
 ENDIF

 * Handle memo fields, so that they get
 * created wide enough
 nFields = AFIELDS(aFieldList, m.cAlias)

Page 12	 FoxRockX� May 2011

 cFieldList = ""

 FOR nField = 1 TO nFields
 cFieldName = aFieldList[m.nField, 1]
 IF m.nColumns = 0 OR ASCAN(aColumns, ;
 m.cFieldName, -1, -1, -1, 7) <> 0
 * It's in the list of columns to include
 IF aFieldList[m.nField,2] = "M"
 * It's a memo field, so convert it to
 * a long char for generating the
 * report.
 cNewFieldSpec = "CAST(" + ;
 m.cFieldName + " AS C(250)) AS " + ;
 m.cFieldName
 ELSE
 * Just pass it along as is.
 cNewFieldSpec = m.cFieldName
 ENDIF
 cFieldList = m.cFieldList + "," + ;
 m.cNewFieldSpec
 ENDIF
 ENDFOR

 cFieldList = SUBSTR(m.cFieldList, 2)

 * Now run the query
 SELECT &cFieldList ;
 FROM (m.cAlias) ;
 INTO CURSOR csrForQuickReport

 IF VARTYPE(m.cColumns) = "C" AND ;
 NOT EMPTY(m.cColumns)
 cFieldsClause = "FIELDS " + m.cColumns
 ELSE
 cFieldsClause = ""
 ENDIF

 CREATE REPORT (m.cReportFile) ;
 FROM csrForQuickReport ;
 COLUMN &cFieldsClause.

 * Kill the special cursor
 USE IN SELECT("csrForQuickReport")

ELSE
 cReportFile = m.cReport
 lCreatedReport = .F.
ENDIF

SELECT (m.cAlias)
REPORT FORM (m.cReportFile) PREVIEW

* Clean up
IF m.lCreatedReport
 ERASE (FORCEEXT(m.cReportFile, "FRX"))
 ERASE (FORCEEXT(m.cReportFile, "FRT"))
ENDIF

RETURN

The biggest challenge here was handling memo
fields. I use them for filenames and paths in many of
the results cursors because there's no way to know
how long those could be. But VFP's quick report
allocates just a very narrow space for memo fields;
while it properly sets the stretch and float attributes,
the column was nowhere near as wide as I wanted it
to be. To work around this, ReportOnProject creates
a new cursor, replacing all memo fields with long
character fields, and uses that as the basis for the
quick report. However, the report actually runs
against the original cursor.

To produce reports, I have a method corresponding
to each of the List methods. Each of these Report
methods receives the alias of the cursor to report
on and, optionally, the name of the report file. Each
method runs a query against the specified cursor to
pull out the data to report and put it in the desired
order. Then each method calls ReportOnProject. For
example, ReportFilesInRoot, shown in Listing 11,
reports on the results of the ListFilesInRoot method.
Note that the reporting methods assume that you've
run the corresponding List method first.

Listing 11. Each of the List methods has a corresponding Re-
port method to produce a formatted list.
PROCEDURE ReportFilesInRoot(cAlias, cReport)

SELECT mFileName, ;
 LEFT(mFileName, 250) as cFileName ;
	 FROM (m.cAlias) ;
	 ORDER BY 2 ;
	 INTO CURSOR csrReport
	
This.ReportOnProject("csrReport", ;
 "mFileName", m.cReport)

USE IN SELECT("csrReport")

RETURN

Because you can't sort a query on a memo field,
I extract a long stretch of the filename and sort on
that. But the second parameter to ReportOnProject
ensures that only the memo field shows up in the
report.

What's Next?
The obvious thing that's missing from this set of
tools is a user interface. It wouldn't be hard to build
a form that lets you select the project you want
to work with and click buttons to run the various
methods. The form could provide a view into the
project as well.

I suspect I'll continue to add methods as needs
arise. Let me know what methods you add, or what
problems you'd like to solve with this tool.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numerous
Visual FoxPro applications for businesses and other
organizations. She currently focuses on working with other
developers through consulting and subcontracting. Tamar
is author or co-author of nearly a dozen books including
the award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with VisualFoxPro and Taming
Visual FoxPro’s SQL . Her latest collaboration is Making
Sense of Sedna and SP2. Her books are available from
Hentzenwerke Publishing (www.hentzenwerke.com). Tamar
is a Microsoft Support Most Valuable Professional and one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.comc

